GRU

GRU

Category: Sequential Models
Framework: PyTorch
Dataset: Custom
Created: March 05, 2025

Overview

From scratch implementation of GRU

Technical Details

  • Framework: PyTorch
  • Dataset: Custom
  • Category: Sequential Models

Implementation Details

Trained a GRU model coded from scratch in Pytorch

ModelArgs Hyperparameters

Parameter Value Description
batch_size 16 The number of samples processed before the model is updated.
max_lr 1e-4 Maximum learning rate.
dropout 0.2 Dropout.
epochs 50 Epochs
block_size 16 Seq Len
No of neurons 16 No of neurons in an GRU per layer

Frameworks:

Pytorch

Epochs/Steps

Epochs (train) = 50

Val iterations = every epoch

Losses

Train loss - 0.51

Val loss - 0.48

Loss Curves

πŸ“Š View Training Loss Curves

Source Code

πŸ“ GitHub Repository: GRU

View the complete implementation, training scripts, and documentation on GitHub.